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ABSTRACT 

The fundamental theory of light scattering by homogeneous and isotropic spherical particles was introduced and 
invented in 1908 by the German physicist Gustav Mie (1868 - 1957). More than 100 years later the Mie 
scattering theory has still growing interest in the field of particle size analysis.  

For transparent homogeneous and spherical materials, especially in the submicron range, Mie Scattering theory 
is the appropriate model for evaluation including optical effects resulting from reflecting or transparent spherical 
particles and from different polarisation effects in the submicron particle size range. Due to different optical 
parameters, including the relative refractive index of particles and the surrounding medium, significant changes 
in physical values can be explained dependent on the particle size. Especially calculations of the Extinction 
Efficiency or of the Volume Concentration of particles can lead to interesting results, e.g. related to material 
consumption. Furthermore, discrimination parameters and decision criterions can be found for the validation 
area of Fraunhofer Diffraction in the border range of the corresponding approximations, depending on size and 
optical parameters of the related particles.  

Mie Scattering calculations, however, were limited in the past by the calculation accuracy. In the range of coarse 
particles instability problems are significant, resulting from large numbers of series terms in the calculation. 
Furthermore, calculation time and accuracy were limited by former computer systems. Today, more powerful 
computers allow for extreme precision calculation tools, and enable to expand the particle size range covered by 
Mie scattering calculations from submicron materials up to particles in the millimetre range. Precision 
calculations are also used to create a Mie validation data set. This data set is necessary and indispensable for 
accuracy checks of Mie light scattering calculations performed on the instruments’ computer, requiring speed 
and precision optimised Mie calculation algorithms. 

The presented Mie scattering calculations are based and verified on this precision analysis. They offer the 
evaluation of particle size distributions from submicron to millimetre particles, for transparent spherical or 
reflecting materials, expanding the existing particle portfolio. 

 

 

1 INTRODUCTION 

The fundamental theory of light scattering by 
homogeneous and isotropic spherical particles was 
described in 1908 by the German physicist Gustav 
Mie (1868 - 1957) (Mie, 1908). In order to describe the 
colour effects of suspensions of colloidal gold nano-
particles, Mie formulated the basic theory using 
fundamental Maxwell equations, boundary conditions 
and mathematical methods expanding planar 
incoming and scattered electromagnetic waves in 
spherical coordinates. Now, more than 100 years after 
the publication, fundamental Mie scattering theory 
becomes more relevant and of adequate usability in 
the field of particle characterization, especially in 
particle size analysis. 

Mie scattering theory is necessary for analyses in 
which optical effects resulting from reflecting or 
transparent spherical particles and from polarization 
effects appear. Thus, proper application of the theory 
requires knowledge of various optical parameters. 
This is in contrast to Fraunhofer diffraction theory, 
which requires no previous knowledge of optical 

parameters and is useful for the analysis of non-
spherical particles but also limited in application to 
opaque materials. Thus, the two theories complement 
one another, expanding the measurable size range to 
smaller particles and enhancing the overall material 
portfolio. Depending on particle size, significant 
differences in results obtained by the Mie and 
Fraunhofer theories can be attributed to different 
optical parameters, including the relative refractive 
index of the particles related to their surrounding 
medium. Especially calculations of the extinction 
efficiency or the volumetric concentration of a sample 
of particles can lead to significant differences in the 
results compared to Fraunhofer diffraction, thus 
significantly influencing other values, e.g. the optical 
concentration or the total material consumption. 

Here we describe an extended precision analysis of 
the Mie scattering theory leading to a Mie validation 
data set and expanded particle size ranges for Mie 
calculations. 
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2 PRECISION ANALYSIS 

2.1 Main focus and preconditions 

The most important parameter of Mie scattering is the 
Mie parameter α=π·x/λ which is directly related to the 
particle size x and to the wavelength of light in the 
surrounding medium λ=λ0/nmed (given by the 
wavelength of light in vacuum λ0 divided by the 
refractive index of the surrounding medium nmed). 
Another important parameter is the relative refractive 
index m = np/nmed, the ratio of the complex refractive 
index of the particle np and the refractive index of the 
medium nmed. Besides the main formulas of the Mie 
scattering theory resulting from Maxwell’s equations 
using boundary conditions at spherical homogeneous 
and isotropic particles and expansion of planar waves 
in spherical coordinates as described in literature by 
van de Hulst (1957), Bohren-Huffman (1983), and 
Wiscombe (1996), only a few papers consider 
problems of precision and stability in calculations and 
challenges to improve algorithms (Wiscombe, 1996; 
Du, 2004). Wiscombe’s report was the starting point 
for the development of our extreme precision analysis, 
with the goals of 

- increasing accuracy from single precision (6-7 
digits of precision for the expansion 
coefficients) to at least double precision by the 
use of more advanced computer architectures,  

- expanding the limitations of particle size 
(α < 20 000 for Wiscombe) to larger particles, 
and  

- extending the range of allowed refractive 
indices of the particles. Du (2004) expanded 
these limitations to larger particles and higher 
refractive indices, but computation speed has 
been reduced compared to Wiscombe’s MIEV0 
algorithm.  

Our precision analysis was therefore focused on 
recurrence and series terms and instabilities. 

 

2.2 Challenges in recurrence and series terms 

There exist different modifications describing routines 
of upward and downward recurrences of the 
corresponding logarithmic derivatives of the Riccati-
Bessel functions (An(z) as defined in eq. 2), which are 
necessary to build the expansion coefficients an(α,m) 
and bn(α,m) in eq. 1. ψn(α), χn(α) and ςn(α) are the 
corresponding Riccati-Bessel functions (Wiscombe, 
1996). Our investigations concentrated especially on 
the stability of these different routines. Upward 
recurrence, which is more easily used, has been 
found to be unstable in the limit of small relative 
refractive indices and small particles. 

 (1) 

 

 
(2) 

 

Downward recurrence however, which is stable for all 
parameters, can be very time consuming if the 
maximum index used as the starting point has been 
chosen too high. With the alternative Lentz method of 
downward recurrence (Wiscombe, 1996) problems 
and instable results also occur for relative refractive 
indices in the proximity of m ≈ 1.0 (i.e. almost no 
scattering) with significantly increased calculation 
time. 

 
(3) 

Another important consideration involves expressing 
planar waves in spherical coordinates, which Gustav 
Mie solved in 1908 using the summation of the so-
called expansion coefficients (eq. 1 and eq. 3).  

These equations combine the electric field inside the 
particle and the scattered field outside of it with the 
incoming electric field. In contrast to theory, an infinite 
number of series terms is not possible in daily 
calculations, so an optimal maximum summation 
index Nmax has to be found (as for the extinction 
efficiency Qext in eq. 3), which ensures a good 
accuracy of the calculation on one hand but also 
reduces calculation time and instabilities on the other 
hand.  

Each additional series term increases calculation time 
linearly, especially for large particles in the millimeter 
range because the number of terms necessary is at 
least linearly dependent on the particle size. With the 
help of the precision analysis using the arbitrary 
precision calculator CALC (Bell, 2003) the 
dependence of particle size and optical parameters on 
this maximum summation index was investigated. 
This calculator computes series exactly on demand 
without truncation.  

The Mie algorithm was implemented in this precision 
calculator based on the programming language C. 
The Mie code was also implemented under the 
mathematical software package Maple 10 for 
comparison. The maximum summation index for 
different particle sizes and optical parameters was 
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determined including an expansion of the Mie 
parameter range to values of α ≥ 20 000.  

By successively increasing Nmax in steps and 
comparing the results with an error range given by the 
convergence criterion, the values were obtained for 
different particle sizes and optical parameters. In the 
report of Wiscombe (Wiscombe, 1996) the 
convergence criterion is given by the so-called Dave 
criterion with |an(α)|² + |bn(α)|² < 5·10

-14
 for the 

expansion coefficients an and bn of the Mie series 
(eq. 1) which leads to a float-precision of 6-7 
significant digits only.  

By increasing the accuracy (with the help of the 
precision calculator the number of significant digits 
could be chosen directly) using a modified Dave 
criterion with |an(α)|² + |bn(α)|² < 5·10

-80
 the number of 

Nmax is only slightly increased compared to the Dave 
criterion used by Wiscombe. This is due to the 
strongly converging Riccati-Bessel functions for n > α. 

As Nmax increases in a super-linear fashion with 
increasing Mie parameter, calculation time grows 
significantly with larger particles and with higher 
requirements of accuracy. Once Nmax is obtained, 
additional checks ensure that the Dave criterion was 
fulfilled in each of the last twenty iterations, thus 
excluding the possibility of instabilities. 

 

2.3 Instabilities 

Instabilities in the Riccati-Bessel functions can occur 
if the given accuracy of a series term calculation is 
not high enough using standard computer 
architectures. In particular, the real part ψn(α) of the 
Riccati-Bessel function ςn(α) (eq. 2) converges 
increasingly rapidly to zero if the number of series 
terms exceeds the given Mie parameter and therefore 
a given particle size.  

Due to accuracy errors, however, small differences 
between iterative results can lead to a divergence of 
ψn(α) away from zero without the value ever having 
actually reached zero or having fulfilled a given 
convergence criterion at a specific summation index.  

Instabilities look like a kink in the graphical view of the 
Riccati-Bessel function and can therefore be easily 
detected. If the summation index of the instability 
occurs after the convergence criterion is reached, the 
accuracy is chosen as good enough. If the instability 
occurs at a summation index before the convergence 
criterion is reached, all calculated values are 
erroneous, especially the expansion coefficients and 
all physical values (extinction efficiency, intensities, 
etc.) derived from these coefficients. Furthermore, the 
convergence criterion is not reached, so algorithm 
problems or infinite loops can possibly occur. 

With increasing accuracy instabilities are shifted to 
higher summation indices and therefore shifted across 
given convergence limits like the Dave criterion. So 

the main goal is to find a maximum number of series 
terms Ndone < Nmax which fulfils a given precision 
condition by the convergence criterion, avoids 
instabilities and reduces calculation time. 

 

2.4 Mie validation data set 

To ensure a high precision of the Mie series 
calculation a validation data set has been established 
with the help of the precision calculator CALC with 
more than 44 000 entries of different Mie parameters, 
optical parameters and scattering angles.  

The pure calculation time to create the validation data 
set was approximately three months using the 
precision calculator. The data set is extendable, if 
additional parameter sets need to be added for 
validation.  

With this Mie validation data set the corresponding 
Mie algorithm has been optimized to fulfill proper 
precision conditions on standard computers at 
minimum calculation time. 

 

 

Tab. 1. Mie scattering results using extended precision 

calculation for a given Mie parameter set (Qext, Qsca: extinction 

and scattering efficiency, is, ip: relative intensity of scattered light 

with polarization perpendicular (is) and parallel (ip)). 

 

The validation data set especially covers the Mie 
parameters from 0.0001 up to 50 000, corresponding 
to particle sizes of x < 1 nm up to 10 mm, in several 
steps.  

The real and imaginary part of the particle property is 
varied in different steps from 0.2 – 3.0 for the real part 
and 0.0, respectively 10

-5
 up to 8.0 for the imaginary 

part.  

Different scattering angles are also included, 
especially at 0° and 90° in order to cover some 
special angles.  

The accuracy is given by the Dave criterion of 
|an(α)|² + |bn(α)|² < 5·10

-80
, so that both expansion 

coefficients allow for almost 40 significant digits in 
accuracy which also applies to the extinction 
efficiency Qext (eq. 3). In tab. 1 the Mie scattering 
results obtained by extended precision calculation are 
shown for a given Mie parameter set. 
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3 CONCLUSIONS 

With the help of the extreme precision analysis an 
extended Mie scattering calculation tool is available 
along with a validation data set for the optimization of 
Mie light scattering algorithms and the expansion of 
particle size ranges. This also allows for the 
combination of several measuring ranges. 
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