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Abstract

For several vears the size distributions of particulate matter have
increasingly been determined by using diffraction partern anal-
ysis.

In order to evaluate particle size distributions from the far field
intensity distribution of light diffracted by a distribution of par-
ticles, a linear set of equations must be solved. Since, in many
cases of application, conventional methods for solving linear sets
of equations become unstable, the calculated particle size dis-
tribution may also be grossly in error. By applying special, known

mathematical methods we succeeded in obtaining a paramerer-
free solution of the above problem.

After a brief description of the mathematical method used, a dif-
fraction pattern analyser will be presented as well as some experi-
mental results obtained with it. The resuits obtained with aero-
sols and suspensions come from experiments performed with
narrow-sized latexes and mono- and bi-modal particle size dis-
tributions of limesione and quartz.

1 Introduction

For a number of years optical methods have increasingly been
used for the measurement of particle size distributions. The vari-
able used to measure the size of an individual particle, an average
size, or the size distribution is the light scattered into a certain
angle of space. Modern electronic and computer technology have
made it possible 1o analyse particle size distriburions quicker and
more reproducibly than with other known methods. On the other
hand, the existing gap between the theory of these instruments,
which is based on spherical particles, and the measurement of
particles of irregular shape cannot yet be closed. Comparative
tests with other methods of particle size analysis do not, there-
fore, always yield the results one would expect. This, however,
does not reduce the interest which these instruments now receive,
due to the fact that speed, reproducibility, and simple handling
are in many cases much more interesting than absolute accuracy.
The report covers the development of a new diffraction pattern
analyser, The analyser has been built for non-interruptive, online
particle size measurements in two-phase flow systems. An instru-
ment of this type was needed for the investigation of the move-
ment of fine particles in gas and liquid flows as encountered in
classifiers, separators and dryers. Since commerciaily available
equipment could not be adapted to our problems, a high resolu-
tion diffraction pattern analyser was developed.

2 Principle and Basic Equation

The physical principle of a diffraction pattern anaiyser, used for
particle size analysis, has been well known for many vears. In1817
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Fraunhofer [1] described a system for producing diffraction pat-
terns similar, with the exception of the light source used, to the
one shown in Figure 1.
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Fig. 1: Optical sewp for the measurement of diffraction patterns.

If one illuminates monosized circular, or spherical, particles inan
extended laser beam, a radially symmetric diffraction paitern will
be obtained in the focal plane of the lens. The particles may be
stationary or moving, suspended in a gas or a liquid; the diffrac-
tion pattern remains the same. It consists of an extremely bright
centre and a series of concentric dark and bright rings. The inten-
sity distribution, 7(r, x), as obtained on the detector surface, was
first described by Airy (2] in1835 with a formuiasimilar toEq. (1).
This equation represents the Fraunhofer approximation for § <
8° with tg8 = r/f.

1ir, ) = Itk x2/2)? (J, (k) / (krx))® m
with
k = (n/Af). 2

frepresents the focal length of the lens, A the wavelength of the
monochromatic light used. J, is the intensity of the incident light
beam and J, the first order Bessel-function of the first kind. The
diffraction theory shows that the bigger the radius, r,, of the
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smallest, that 1s the first, dark ring the smaller the diameter, x, of
the circular or spherical particles. r, can be caleulated from:
S

=12 (3)

If the spheres present in the laser beam follow a number density
distribution, g,(x), the diffraction patterns of individual
particles are superimnposed and one obtains a radially syrnmetri-
cal but diffuse diffracuen patterr, 7(r). Assuming a continuous
function for g, (x), the radial intensity distribution of the diffrac-
tion pattern can be described by:

i) = njln N, gy (x) I(r, x) dx . 4

“min

Eq. (4) represents a first crder Fredholm integral equation of the
first kind, similar to the equations one obtains when analysing the
spectral extinction of a particle size distribution or the angle
dependent intensity of the scattered light.

The solution of this integral equation is the number density dis-
tribution, g4{x), of the particles. As far as known, Eq. (4) was
first solved in 1955 by Chin et al. [3, 4] and in 1956 by Shifrin [5]
by the application of the so-called Mellin transformation first
suggested in 1924 by Zirchmarsh {6]. Similar but different solu-
tions have been suggested by Shifrin and Koimakov [7]. An
approximate solution can be obtained by the so-called numericat
quadratur as described by Twomey [8] in 1963.

The Fredholm integral equation is transferred into a system of
linear equations which can be solved as described in the following
section.

3 Numerical Quadratur of the Integral Equation

The radially symrnetrical diffraction pattern must be measured
with a special detector. One mayv use, forinstance, a multielement
detector as shown schematically in Figure 2. It consists of
concentric half circles of increasing radial width, 4r;.

Fig. 2: Multi element detector for the measurement of radially sym-
metrical diffraction patterns.

The power of the light, L (4r;), to be measured in the circular de-
tector rings of width Ar, = r,,, - r;, can be obtained by inte-
grating the intensity distribution 1(r) (Eq. 4) over the area of the
circuiar ring. One obtains:

Tmax

L(Arj) = 5 sz?o(x) L(Afj.x) dx . (5)
With
Liar,x) = (n/2) I,x* (Jitkxr) + J3 (kxr)

- Jé(k_xrjﬂ) - j%(erj+1))- (6)

Eq. (5) cannot be solved analytically for chosen number density
distributions g, {x). A sclution can, however, be found under the
following assumptions: Firstly the integral of Eq. (5) is split into
M particle size intervals.

M Xy
Liar) = ¥ | N @o(x) L (47, x) dx (7

=1

The number density distribution g, (x) can be assumed 10 be con-
stantin each interval if each individual size interval is sufficiently
small. g,(x) is then replaced by the histogram g, (%,), with x. the
arithmetic mean of the interval boundaries x; and x,,,. One
arrives at:

M i+t
L(Arj) = ¥ Ny G(%) _[ Lidr,x)dx. (8)
i=1

)

If the diffraction pattern is measured in M different detector
rings, Eq. (8) can be given for each individual ring. One obtains,
therefore, a linear set of equations with the coefficients L (4 T, x)
which has to be solved with respect to the unknown values §, ()
of the number density distribution.

4 Special Approach for a Final Solution

If one tries to solve the linear set of equations with conventional
mathematical methods, one soon realizes that extremely small
fluctuations of L (4r;) lead to results with no physical sense. This
problem becomes more and more pronounced the higher the
resolution one intends to obtain. The results of the calculations
may become an oscillating curve which does not even remotely
resemble the exact solution. The oscillations become larger the
greater the number of equations and the flucruations of L (4 ).
Figure 3 shows an example. The power of the light, L (4 r), ob-
tained by intreducing a log-normal number distribution into Eq.
{8) has been used to recalculate g,(¥) from the same equation.
The oscillating, meaningless curve shown in Figure 3 was ob-
tained.
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Fig. 3: Oscillating recalculated log-normal number distribution,

It can be shown, both theoretically and experimentally, that a
reduction of the experimentally induced fluctuations of L (4 r)is
notsufficient to arrive at reasonable results. Thisis due tothe fact
that a system of linear equations, as obtained in the present case,
is in principle highly unstable or ill conditioned.

If the power of the light, L (4r;), is called vector L with elements
L;, the power of the light, L (dr,, x;}, the coefficient matrix, A,
with elements 4;; and the number density distribution, §, (%), Eq.
{8) can be written as a matrix equation:

Ag=1L. )]
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The true, but oscillating solutions g, of Eq. (9) one obtains from:
g = AL, . (10)
L, represents the vector of the light power, L,, with errors,

The oscillations described become smaller the lower the number
of equations. If one restricts the number of equations to eight or
ten, reasonable resuits can be obtained with a resolution which
matches many practical applications, The matrix of coefficients,
A, must then, however, be averaged over fairly wide size inter-
vals.

1f one uses a larger number of equations, the oscillations may be
suppressed by two methods. .

A first possibility is to postulate an analytical function as a
solution for the unknown distribution curve, the parameters of
which can be calculated using a least squares method. One may,
for instance, use the well known distribution functions of the
Gaudin-Schuhmann, the Rosin-Rammler-Sperling-Bennet or
the log normal-distribution types. The field of solutions is, how-
ever, drastically reduced since a general, parameterfree solution
is no longer possible. The deviations from the particle size dis-
tribution under investigation may be especially large if the
analytical function chosen simulates a monomodal distribution,
while in reality a bimodal or multimodal distribution exists.
We prefer, therefore, methods which, on the one hand, permit a
general, parameter-free solution but on the other hand suppress
oscillations, A methed of this kind was suggested in 1962 by
Philipps [9} and improved by Twomey [10] in 1963. Heuer [11]
has recently published results obtained when applying Twomey’s
method to the calculation of particle size distributions from dif-
fraction patterns.

This method accepts a certain error vector, e, with the elements
g, when measuring the light power L. One rewrites Eq. (9), there-
fore, as follows:

Ag, - L;=e. (11)

In order to obtain an appropriate solution for g,, one first forms
the sum of all errors squared and arrives at:

(Ag, — LT (Ag, — Ly) = €. (12)

By applying the least squares method one again obtains a true,
but oscillating, solution g,. For a smoothed sclution a deviation
a, is introduced, as defined in Figure 4:

1 1
& == 5 T & 5 G- (13)

a;, represents the deviation of the straight line connecting the
points P,_, and P, , from the ordinate of P;, The sum of squares
of these deviations equals:

, 1 5
at=Yal=% "‘1‘(2% = iy < i) (14)
Written in a vectorial form one arrives at:
a=Kg (15)

with the following matrix for X

0 0 0 0 0
-1 2 -1 0 0

K = o -1 2 -1 0 (16)
0 o -1 -1

9
qH Pa-l
q F
1 ! Gizqi'%QH_%QM
q _
Qi Pb-1
X X Xiag X =
Fig. 4: Definition of the deviation 4.
2- may be obtained from:
2t = qg'K"Kq = gTHg an
with H the product of KT X
1 -2 1 0 0 0
-2 5 -4 1 0 Q
H= 1 -4 6 -4 1 0 (18)
0 1 -4 6 —4 1

The sum of the squares of the errors, e, and the deviations, a, is
defined as shown in Eq. (19).

Yel+yYTal=cet+ yat. (19

y represents a weighting factor. If one introduces Egs. (12) and
(17) one obtains;

(Ag, — L)T (Aq, — L) + yqlHq, = e + ya*. 20}

The minimization of Eq. (20) finally yields:
g, =ATA + yH)"1 AT L, (2n

This method is analogous to the method of linear optimization
and the factor, y, can therefore also be called a Lagrangian multi-
plier. It is a measure of the degree of smoothing. Heuer [11] has
performed a number of mathematical simulations in order to
evaluate the useful range of y-values.

Figure 5 shows a log-normai distribution with a median value of
200 um and a standard deviation of 5 = 0.5. Its radial intensity
distribution was calculated, substituted into Eq. (2) and, with
varying numerical values for y, was then solved for g, (x). The
result of this calculation is shown in Figure 6.
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Fig. 5: Log-normal-distribution with a median particle size of 200 um
and standard deviation s = 0.5,
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Fig. 6: Recalculated log-normai-distributions using different vajues of
v with sums of squared errors.

Omerecognizes that the bestreproduction of the given log-normal
distribution is obtained fory = 10 ~!', The sum of the squares of
the errars, £, which was used for quantitative comparison of the
back-calculated and the given distribution,

fy = VI dgax)? (22)

amounted 10 f, = 3,99 10 ~* in this case. From these calculations
it was determined that 2 - 10 ~* can be taken as the upper error
limit. Iffq is less than 10 —2, the deviations lie in the region of the
thickness of the lines used in Figure 6.

Heuer [11] was able to show that the curves £, have pronounced
minima in the region 10 ~1* = y = 10-? when one changes, for
example, the median value of the given log-normal distribution.
Those interested in further resuits of the simulation calculations
are referred to the quoted paper [11].

The results of the simulation calculations and the experimental
verification showed that one may use one single p-value over a
wide range of particles sizes. This y-value can be experimenially
determined and can then be used for subsequent analyses.
Furthermore, a decisive improvement in the necessary smoothing
was obtained through an improvement in the structure of the
entire matrix. It is known that asystemn of equations is morestable
the higher the value of the determinant of the coefficient matrix.
This is the case when the numerical values of the terms of the
matrix around the main diagonal are largest and are not too dif-
ferent from each other. However, the structure of the coefficient
matrix is given by L (475, x)). A change is only possible when one
converts the number distribution to a distribution with respect to
a different quantity.

The type of density distribution can be changed according to Eq.
(23) [12]:

xl—rqr (x)
__"'—_M .

{=r.r

g (x) =

@3

Fig. 7: Matrices for number and volume distributions.

Here, M, is the complete {r — r) — 24 moment of the g, (x)-dis-
tribution and is defined according to Eq. (24):

*max
M_ .= [ xg.(x)dv. (24)

Tmin

With 7 = 0 {(number distribution) ons obrains:

X7 g 1x)
M ' (23)

=1.r

gglx) =

Substituting Eq. (23) into Eq. (3), one arrives at:

LiAr) = NyuM=\ T x 7q,(x) L(ar,x) d . (26)

“min

Inthe following, the constant N, /M _,  will notbe pursued since
it disappears during the normalization of the calculations. In Eq.
(26), r = 3 should be inserted for the calculation of a volume
density distribution. For a surface area distribution, 7 = 2. Fora
length distribution: r = 1,

For r = 3 one obtains from Eq. (26):

Ldr) = Ny MZHy § x3g5(%) Lar,xydx. 27

*min

If one, furthermore, considers L (4 r,,x) according to Eq. (6),
one finally obtains:

Lr) = C | gy(x)x ™ (Jitkxr) + J (kxr)

*min

- Sk ) — Ji Gk, ) dx (28)

In Figure 7 the mairices for the types of quantity » = Qand r = 3
are represented in a three dimensional plot.

The numerical values of the coefficients correspond to the points
of intersection of the lines presented. Both matrices are plotied,
with dependence on radius, r, and particle size, x, on logarithmi-
cally divided axes. For both matrices one can discern a smooth
surface to the right and a wave structure to the left of the main
diagonals. In the region of the smooth surface the detector radii
lie within the major maximum, that is the zero order of the dif-
fraction picture of the particle. The wave structure to the left of
the main diagonal is produced through the minima and maxima
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of the diffraction picture outside the zero order. The smoothness
an the edge of the matrix for large particles results from the fact
that the particle size intervals of the integration conrtinuaily be-
come larger for a logarithmic subdivision of the axes.

The peaks and valleys project more for smaller integration inter-
vals, that is the more equations and detector elemernts one uses.
The values for large particles and small radii disappear from the
presentation since the inner circular rings of the detector are pro-
portionally too wide for manufacturing reasons.

One recognizes that the matrix obtained for a number distribu-
tion (r = 0) has its largest values on its outer edge for large partic-
les. On the other hand, the matrix obtained for a volumedistribu-
tion (r = 3) exhibits the desired form. The largest values lic near
the main diagonal and are nearly of the same size.
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Fig. 8: Matrices for number and volume distribuzions.

In Figure 8 the matrices for the four quantity typesr = 0tor = 3
are presented in a somewhat different fashion. If one observes
the form of the surfaces with inereasing type of quantity, one re-
cognizes the change from a lateral matrix emphasizing large par-
ticles at » = 0 to a matrix with r = 3 with values in the region of
the main diagonals being approximately the same. The surface
drops on both sides of the main diagonals.

5 Description of the Instrument

For the measurements described, a modular diffraction spectro-
meter HELOS * was built, which consists of the following major
components:

i. Thesystem for obtaining the test data: Itis set up onan optical
bench and includes all components for the production of the
diffraction pattern, such as:

— laser

- expansion optics

— MIrror system

— collection lens

— muitielement detector

— suspension cell or the feeder-dispersion svsiem RODOS*
for dry powders.

* Manufacrured by: SYMPATEC GmbH, Asseweg 18. D-31346 Rem-
lingen (Federal Repubiic of Germany).

tJd

The system for the processing of the test data: It consists of a
Kontron microcomputer PSI 82 which contains all compo-
nents necessary for the reception, corroboration, and pro-
cessing of the data.

3. The delivery units, printer and plotter.

The test data are obtained from the computer by means of a
“sample and hold” hook up, thus levelling the osciilations of the
test signal caused by concentration- and laser power oscillations.

6 Results obtained in the Experiment

6.1 Measurement of Latexes

In order to check the conformity of the analyzed distribution
curves for spherical, absorbing particles, narrow sized latex sus-
pensions covering a particle size range from 2 pm to 42 pm were
analysed with the instrument. The latex suspensions used were
obtained from the firm Coulter Electronics, Luton, England.
After agitating the samples an appropriate amount of latexes
were transferred to the suspension cell of the instrumen: and dis-
persed using ultrasonics for appr. 30 seconds. The distribution
was then anaiysed running the instrument for 20 seconds. During
this time the diffraction pattern was scanned 6666 times. In
Figure 9 the average data given by Couiter Electronics, that is:
Yoy the weight peak split (comparable with the most frequent
value of g,(x)) and x.,, the so called singlet number median
diameter, are compared with the mode x, and the median particle
size Xy ; of g, (x), obtained with the diffraction analyser.
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Fig. 9: Comparison of resuits obrained from diffraction pattern analy-
ses with lagex.

The mode x.,, the most irequent particle size obtained with dif-
fraction pattern analysis, agrees within 1,3% with the x.,; , values
of the 8.7, 14.1 and 39.5 um latexes. With the 2.1t um latex
sample the diffraction pattern results give smaller sizes, which
was 10 e expected in the border region of Fraunhofer diffrac-
uon.

6.2 Investigation of the Reproducibility of the Resuits

In order to investigare the reproducibility of the results obtained
with the instrument, measurements were performed with a lime-
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stone distribution covering a sizerange between 2 and 40 um. The
results, from repeated measurements of one, and of several dif-
“erent samples are presented in Figure 10. The repeated measure-
ments of one sample, shown on the left hand side of Figure 10,
sroduced standard deviations of less than 0.36%, These devia-
:ions are givenin Figure 10 for four points of the density distribu-
Jon.
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Fig. 10: Scatter of results obiained from repeated measurements of the
same and of different limestone size distributions.

The standard deviation of measurements of different samples
was approximately ten times larger. On the right hand side of
Figure 10, the same particle size distribution is shown displaced
w0 powers of ten from the distribution on the left. The vertical
lines shown at different points give the maximum scatter band,
caused by the error introduced when splitting the original sample.
In order to obtain an adequate, statistically reliable result, there
must be a certain minimum number of particles in the laser beam
when measuring the distribution. On the other hand, the solids
concentration should not be too high in order to keep multiple
scattering as small as possible.

Density and cumulative distribution curves for optical concen-
trations between 0.275 and 0.541 have been plotted on the left
hand side of Figure 11. One discerns a small displacement to
smaller particles, in the fine region, with increasing solids concen-
tration. The overall deviation is very small and is presumably due
to multiple scattering and diffraction.

Menzel [13] have, therefore, developed and tested a dry feeder-
dispersion unit, which produces an aerosol as a free jet to be
blown through the laser beam. A comparison of the density and
cumulative distributions, as obtained by drv analysis, with the
ones obiained with a suspension is represented on the right hand
side of Figure 11. One sees a small displacement of the distribu-
tion curves of the dry samples towards finer sizes compared to the
wet analysis.

The instrument can be operated with different focal lengths of
50 mm, 200 mm, and 1000 mm. Measurements in particle size
ranges below 100 um, 400 pm or 2000 ;Lm can thus be carried out.
Figure 12 shows the result as obtained with the same latex dis-
tribution using different focal lengths of 200 mm and 1000 mm.
One sees a shift of the distribution towards finer sizes on the fine
end of the distribution for the smaller focal length. In the upper
region the density curves agree. This effect can be traced back to
the small spread of the lobe and the collection of several second-
ary maxima of the intensity distributions of the particles at iower
focal distances,
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Fig.12: Comparisonof resultsobrained with focaldistances of 1000 mm

and 200 mm of the same latex suspension,
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Fig. 11: Comparison of results obtained at optical concentrations

between 0.275 and 0,521 and of wet and dry analyses.

The measurements so far presented were carried out with suspen-
sions. In many cases, however, itisdifficult, or nearly impossible,
to find an appropriate liquid or a suitable dispersion medium for
a certain solid. In other cases one is interested in the agglomerate
size distribution in a dry condition. Leschonski, Rothele and

6.3 Results from Measarements of Mixtures

A particularly difficult test for instruments used for particle size
analysisis themeasurement of bimodal distributions. For this pur-
pose, two primary limestone distributions in the particle sizerange
from 2 um to 10 um and from 3 pm to 40 um were first meas-
ured separately, and then with mixture ratios of 10:90, 30:70,
50:50, 70:30 and 90:10. The measured curves of the mixtures
were then compared with the curves calculated from the primary
distributions. The results are shown in Figure 13.

The measured distributions for the 10: 90, 30: 70, and 50 : 50 mix-
tures agree well with the curves calculated from the primary dis-
tributions within the thickness of the lines. This represents an
absolute error of approximately 0.5% . The measured 70: 30 dis-
tribution agrees in the upper and lower region and shows a slight
deviation in the middle region (the maximum deviation amounts
10 2.67% absolute from ,). The measured 90: 10 distribution is
shifted towards the finer sizes throughout the entire particle size
range. The maximum absolute deviation amounts to 4%. The
deviation observed is presumably caused by too small a number
of coarse particles.

As a further exampie, the primary distributions of two quartz
fractions and their 50: 50 mixture are shown in Figure 14.
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Fig. 13:  Comparison of size distributions as obtained from limestone-
mixtures.
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Fig. t4: Primary- and 50: 50-mixture-distribution of quartz fracrions.

7 Summary

If one uses a large number of support points when measuring a
particle size distribution from a diffraction pattern, the use of a
special mathematical method is unavoidable for the evaluation of
the particle size distribution. The solution method, initially
proposed by Phillips [9) and Tworney [10], contains no restric-
tions to the number of possible solutions. The process described
is suitable for on-line measurements.

8 Symbols and Abbreviations

vector of the deviations

deviation

coetficient matrix

error vector

focal length

area error of the density curve

smoothness matrix

intensity of light

initial intensity of light

Bessel function of zero order

Bessel function of first order
= (n/4f) abbreviation

deviation matrix

power of the light

MR ASSSNSSe LR R

13

M number of particle size intervais
N total number of the particles
q density distribution
Q cumulative distribution
r radius
5 standard deviation
X particle diameter
Xeg median of cumulative distribution
Xy mode of the g, (x) distribution
y Langrange multiplier
AaAr ring width
A wavelength
g diffraction angle
Indices
2 exact
f error afflicted

smoothed
tot entire
i running variable for particle sizes
j running variable for detector radii
max maximum
min minimum
r type of quantity
T transposed
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